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By considering an idealized model of helically forced flow in an extended domain
that allows scale separation, we have investigated the interaction between dynamo
action on different spatial scales. The evolution of the magnetic field is studied
numerically, from an initial state of weak magnetization, through the kinematic and
into the dynamic regime. We show how the choice of initial conditions is a crucial
factor in determining the structure of the magnetic field at subsequent times. For a
simulation with initial conditions chosen to favour the growth of the small-scale field,
the evolution of the large-scale magnetic field can be described in terms of the α-effect
of mean field magnetohydrodynamics. We have investigated this feature further by a
series of related numerical simulations in smaller domains. Of particular significance
is that the results are consistent with the existence of a nonlinearly driven α-effect
that becomes saturated at very small amplitudes of the mean magnetic field.

1. Introduction
Magnetic fields are responsible for a host of astrophysical phenomena, over a vast

range of spatial scales (Parker 1979). In the Sun, for example, the solar cycle provides
evidence of a global, coherent field on the one hand, whereas, on the other, magnetic
fields are observed all the way down to the limits of spatial resolution. The evolution
of cosmical magnetic fields is most naturally explained in terms of dynamo action,
in which the fields are amplified and maintained by the motions of an electrically
conducting fluid. The study of dynamo action has addressed this problem from many
different points of view. Consideration of the physical processes involved has led to the
distinction, inter alia, between kinematic and dynamic, slow and fast, and large- and
small-scale dynamos. Furthermore, this has led to the development of approximations
that afford conceptual or computational advantages for certain specific cases.

A kinematic dynamo is one in which the magnetic field is weak, in the sense that
the velocity field is independent of the Lorentz force. Kinematic dynamos describe the
initial amplification of magnetic fields from a state of weak magnetization. By contrast,
in a dynamic dynamo the magnetic field, through the Lorentz force, plays a dynamical
role. Dynamic dynamos describe the saturation and subsequent maintenance of
magnetic fields over long periods of time. Kinematic dynamos are traditionally
studied within the framework of the kinematic approximation, in which the evolution
of the (weak) magnetic field is described by solution of the induction equation
alone, for prescribed velocities. This clearly affords an enormous simplification in
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that the problem of solving the Navier–Stokes equation is side-stepped altogether,
and the dynamo aspects are reduced to what is, in essence, a linear eigenvalue
problem for the dynamo growth rate. Interestingly, and as we shall see later, there
are circumstances in which the kinematic regime is not adequately described by the
kinematic approximation.

The distinction between slow and fast dynamos is peculiar in that it only rigorously
applies to kinematic dynamos; specifically, a dynamo is said to be fast if its growth
rate remains positive in the limit of infinite electrical conductivity, and is said to
be slow otherwise. From a physical point of view, it is perhaps more sensible to
distinguish not so much between fast and slow, but between dynamos that operate in
fluids with high as opposed to low electrical conductivity (measured in dimensionless
units by the magnetic Reynolds number Rm). The latter distinction applies both to
the kinematic and dynamic regimes, and corresponds to actual situations of physical
interest; for example, in most laboratory experiments the magnetic Reynolds numbers
is low, whereas in the majority of astrophysical situations it is huge.

The distinction between large- and small-scale dynamos relates to the spatial
structure of the generated magnetic fields. A large-scale dynamo generates magnetic
fields with characteristic scales large compared with those of the velocity. A small-
scale dynamo, by contrast, generates magnetic fields with characteristic scales smaller
than, or comparable to, those of the velocity. Most cosmical magnetic fields have
a well-defined large-scale component, typically being generated by a combination
of large-scale and small-scale motions. Toroidal magnetic field is generated by the
large-scale shearing, due to differential rotation, of the poloidal magnetic field; the
large-scale poloidal field is regenerated through the cumulative effects of small-
scale motions acting on the toroidal field. Mean field electrodynamics was developed
specifically to study the evolution of magnetic fields driven, at least in part, by small-
scale motions. A certain mathematical elegance of this approach, together with its
‘user friendliness’, has led to practically all studies of astrophysical dynamos being
cast within its framework. One of the assumptions of mean field theory, possibly one
that is not always explicitly stated (though see the discussions in Moffatt 1978 and
Krause & Rädler 1980), is that the small-scale fields are stable to dynamo growth.
Indeed, for low magnetic Reynolds number turbulence lacking reflectional symmetry
(e.g. helical turbulence), it is indeed the case that there will be dynamo amplification of
the large-, but not the small-scale field. However, at high or even moderate magnetic
Reynolds numbers the situation is likely to be more complex. Recent advances in
dynamo theory, mostly driven by the fast dynamo issue, suggest that small-scale
dynamo action is very prevalent even in the absence of helicity (see, for example,
Hughes, Cattaneo & Kim 1996). Thus, turbulence in highly (electrically) conducting
fluids is always likely to act as a small-scale dynamo, and in the presence of helicity,
as a large-scale dynamo also.

The aim of the work described in this paper is to investigate the important issue of
the interplay between magnetic field generation on different spatial scales. We base
our approach on moderately high magnetic Reynolds number simulations of helically
forced flows, in which we follow in detail the magnetic field evolution in both the
kinematic and dynamic regimes. Rather than attack the problem in its full generality,
an approach that is simply not feasible even with present resources, we consider a
somewhat idealized model that nevertheless captures the essence of scale separation.
The following section contains the formulation of the model problem. In § 3 we study
the evolution of the magnetic field from initial states of weak magnetization, through
the kinematic and into the dynamic regime, addressing, in particular, the importance
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of initial conditions. We find that in one case the results can be understood in terms
of the classical α-effect of mean field electrodynamics, a point that is investigated by a
further series of calculations in § 4. A critical discussion of the results is contained in § 5.

2. Formulation
We consider dynamo action in an incompressible fluid with constant electrical con-

ductivity and viscosity. The evolution equations in dimensionless form and standard
notation can be written as

(∂t − Re−1∇2)U +U · ∇U = −∇p+ J × B + F , (2.1)

(∂t − Rm−1∇2)B = ∇× (U × B), (2.2)

∇ · B = ∇ ·U = 0, (2.3)

where F is a forcing function, and Re and Rm are the kinetic and magnetic Reynolds
numbers respectively. The choice of F determines, to a large extent, the character
of the problem. Since we are interested here in the transition from kinematic to
nonlinear dynamo states we choose a particular forcing function that leads to a
kinematic regime with properties that are well understood. To this end, we define F
in terms of U 0, where

U 0 = (∂yψ,−∂xψ, ψ), ψ =
√

3/2[cos(x+ cos t) + sin(y + sin t)], (2.4)

and

F = (∂t − Re−1∇2)U 0. (2.5)

This construction guarantees that in the absence of magnetic field, U = U 0 is a
solution of the momentum equation (2.1). This can easily be verified by noting that
∇ ·U 0 = 0, and that U 0 is maximally helical (U 0 × (∇×U 0) = 0) so that U 0 · ∇U 0 is
the gradient of a scalar.

The velocity U 0 was introduced by Galloway & Proctor (1992) in the context of
kinematic dynamo theory, and has a number of interesting properties. The flow U 0 is
triply-periodic and z-independent; as a result, the induction equation has separable
solutions of the form

B(x, t) = Bp(x, y, t) exp(st+ ikzz), s = σ + iω, (2.6)

where Bp is periodic in time with the same period as U 0. This form of the solution
affords a formal reduction of the induction equation from three to two spatial
dimensions. In fact, it was this very property that led several authors to choose this
general type of velocity as the basis for their studies of kinematic dynamo action
(e.g. Galloway & Proctor 1992; Otani 1993; Cattaneo et al. 1995; Ponty, Pouquet
& Sulem 1995; Hughes et al. 1996). In the simplest case where Bp has the same
spatial periodicity as U 0, the maximum growth rate (taken over all values of kz)
increases with Rm before levelling off at a value of approximately 0.3 at Rm ≈ 80.
Significantly, increases in Rm up to the level of computational feasibility (Rm ≈ 105)
leave the growth rate unaffected. This led Galloway & Proctor (1992) to conjecture
that it would indeed remain unaffected in the limit Rm → ∞ – the fast dynamo
property. In general, the growth rate depends both on the wavenumber kz and on
Rm. Remarkably, however, provided that Rm is sufficiently large (& 50), the mode of
maximum growth rate becomes independent of Rm, assuming the value kz ≈ 0.57; in
other words the mode of maximum growth rate attains asymptotically a fixed ‘size’.
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This should be contrasted with, for instance, the time-independent version of (2.4),
for which, as Rm → ∞, the maximum growth rate tends to zero (albeit slowly, as
ln(lnRm)/ lnRm) (Soward 1987). Furthermore, in this latter case, the wavenumber of
maximum growth rate increases with Rm, the scale of the mode of fastest growth
decreasing to zero (as ((lnRm)/Rm)1/2) as Rm becomes infinite. The difference between
these two cases is attributed to the presence of large regions of chaotic streamlines in
the time-dependent flow, and their absence in the steady case.

In the present paper our interests are chiefly in the nonlinear regime, where we
anticipate that the problem will become three-dimensional and that therefore we will
lose the computational advantage afforded by two-dimensionality. The motivation
for our choice of forcing function is thus somewhat different. We wish to study the
development of nonlinear dynamo states from initial conditions of weak magnet-
ization and so as a first consideration it makes sense to build upon a well-studied
kinematic regime. We note that this is not merely a matter of choosing a convenient
velocity, but rather of choosing one that is hydrodynamically robust. In other words,
it should be possible to drive the chosen velocity for times that are long compared to
the typical growth time of the magnetic field. The time-dependent flow (2.4) falls into
this category, in contrast, interestingly, to steady ABC flows for which instability can
set in at quite low values of the fluid Reynolds number (for the A = B = C = 1 flow,
instability sets in at Re ≈ 13 (Podvigina & Pouquet 1994)). As a second factor, the
forcing function F given by (2.5) gives rise to a spatially periodic problem that can
be efficiently implemented numerically. Third, even at moderate Rm the velocity U 0

is a healthy dynamo (for kz = 0.57, dynamo action sets in at Rm ≈ 1.5), and thus the
nonlinear regime can be attained in a reasonably short computational time. Fourth,
and crucially for the work described in the following section, the dynamo growth rate
remains positive as kz → 0. This implies that the velocity U 0 can amplify magnetic
fields with arbitrarily large extent in the z-direction. Finally, we conclude this section
by noting that since, by computational necessity, nonlinear studies are restricted to
moderate values of Rm, we do not explicitly invoke the fast dynamo property of U 0.
Nonetheless, it gives us hope that the results derived here may apply even in the
large-Rm regime.

2.1. Numerical considerations

The equations (2.1)–(2.3) with the forcing function defined by (2.4)–(2.5) can be ef-
ficiently solved on a triply-periodic domain by standard pseudo-spectral techniques.
Spatial derivatives are evaluated in phase space where they reduce to simple wave-
vector multiplications. Nonlinear terms involving products of the field variables are
evaluated in configuration space where, once again, they reduce to simple multipli-
cations. Aliasing errors are removed by standard 2/3 rule methods. The diffusive
terms can be treated exactly by use of an integrating factor. For the overall time dis-
cretization we adopt a third-order Runge–Kutta scheme. The pressure term in (2.1) is
not explicitly evaluated; instead, the updated velocity is constrained to be solenoidal
by an exact phase-space projection method. The transformation between phase and
configuration space is afforded by fast Fourier transform techniques optimized for
parallel architectures.

3. Tall boxes
In this section we explore the interplay between the evolution of magnetic structures

of different sizes. In particular, we are interested in the conditions that lead to the
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Figure 1. Dynamo growth rate as a function of vertical wavenumber kz for a case with Rm = 100.
The value of the maximum growth rate and of selected overtones (kz = 0.57/2, kz = 0.57/4 and
kz = 0.57/8) are shown.

generation of large-scale magnetic fields. As a natural starting point for our discussion
we consider the dependence of the growth rate on the ‘vertical’ wavenumber kz . (For
convenience we shall refer to z as the vertical, and x and y as the horizontal directions,
even though there is no gravity in this problem.) This dependence, for Rm = 100, is
shown in figure 1. The growth rate has a maximum at kz = kmax ≈ 0.57, decreasing
monotonically to zero at kz = 0. Significantly, dσ/dkz(kz = 0) > 0, so that there is
exponential growth for magnetic fields of arbitrarily large vertical extent. For kz > kmax
the curve decreases to zero non-monotonically, its detailed structure depending on
Rm (Hughes, Cattaneo & Kim 1998). By contrast, the behaviour for small kz is found
to be surprisingly insensitive to changes in Rm. The properties of the associated
eigenfunctions have been extensively studied (Cattaneo et al. 1995) and will not be
reviewed here except to note that the horizontal components of Bp in expression
(2.6) have non-zero horizontal averages. In other words, the horizontally averaged
structure of the kinematic eigenfunctions is that of a horizontal uniform field, the
direction of which varies with z. We shall refer to this property presently.

Since we are mostly concerned with the interaction between large- and small-scale
magnetic structures it is appropriate to specify precisely what we mean by these terms
in the present context. Typically in dynamo theory, scales are defined relative to the
characteristic scale of the velocity. In the case of turbulent flows this scale naturally
corresponds to the correlation length. For the flow U 0, the only meaningful scale is
that of the horizontal periodicity since the flow is z-independent. However, it would be
misleading to equate this particular scale with a correlation length, since for periodic
flows all periodic subdomains are in phase and hence, in some sense, the correlation
length is infinite. Instead, for this problem it is more meaningful to shift the emphasis
from the velocity to the magnetic field. The horizontal structure of the magnetic
eigenfunction is not appropriate since, as mentioned above, the horizontal average is
non-zero, and therefore the magnetic field can be thought of as having infinite extent.
On the other hand, the vertical extent of the mode of maximum growth rate is a
well-defined, meaningful scale, and we shall adopt it here as the scale characterizing
this problem. As we shall see shortly, there are dynamical reasons why this is a
particularly appropriate choice. Thus, a large-scale field is to be understood as one
with vertical extent large compared to that of the mode of maximum growth rate.
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I.C. Urms Brms

A1 � A8 1.35 0.85
A1 ≈ A8 1.34 0.82

Table 1. The root-mean-square velocity Urms and root-mean-square magnetic field Brms for the tall
box runs, with Re = Rm = 100, dimensions 2π× 2π× 16π/kmax and resolution 128× 128× 1024.

We are now in a position to describe our numerical experiments. Details of the
runs are given in table 1. We consider a computational domain of size 2π in the
x- and y-directions, and 8 × 2π/kmax in the z-direction. Such a domain houses, for
example, eight replicas of the mode of maximum growth rate or the mode with vertical
wavenumber kmax/8 exactly once. This choice is motivated by a compromise between
the need for a scale separation worthy of the name and computational feasibility. It
is convenient, in this section, to define a new vertical wavenumber K measured in
units of kmax/8; with this notation the mode of maximum growth rate has K = 8. As
initial conditions we impose

U (x, 0) = U 0(x, 0), B(x, 0) = A1B
(1)
p eiz + A8B

(8)
p e8iz, (3.1)

where B(K)
p describes the horizontal structure of the kinematic eigenmode of wavenum-

ber K (cf. (2.6)). If the constants A1, A8 � 1 then, initially, the Lorentz force will
be negligible and the velocity will satisfy U (x, t) ≈ U 0(x, t). Initially, the magnetic
field will evolve kinematically, before eventually attaining sufficient strength that the
Lorentz force becomes dynamically significant. The subsequent evolution is essentially
nonlinear and of particular interest to the present study. Clearly, the structure of the
magnetic field as it enters this nonlinear phase depends on the initial choice of the
amplitudes A1 and A8. We explore this dependence by considering two distinct cases,
one in which the large-scale field becomes dynamical while the small-scale field is still
kinematic, and another in which the roles are reversed.

3.1. Large-scale saturation

We consider first a case in which the initial amplitudes A1 and A8 are chosen such
that the energy in the large-scale component exceeds the energy in the small-scale
component throughout the kinematic regime. The transition to the dynamical regime
and the subsequent development can be followed by the time evolution of the
(magnetic) energy density binned by vertical wavenumber. Thus we define

MK(t) =
1

2

∑
kx,ky

|B̂(kx, ky, K)|2, (3.2)

where B̂ is the Fourier transform of B; no distinction is made here between positive
and negative values of K . Similar quantities VK can be defined analogously for
the velocity. Figure 2(a) shows the time evolution of the total magnetic energy,
and that of some specific wavenumbers; figure 2(b) shows the corresponding curves
for the total kinetic energy, V0 and V2. Two important epochs can be identified:
t = td ≈ 12, corresponding to the beginning of the dynamical regime and characterized
by substantial departures from an exponential behaviour; t = ts ≈ 35, corresponding
to the beginning of the stationary state. The interval td < t < ts is a period of
dynamical readjustment in which the system evolves markedly from the kinematic
state. The ratio M1/M8 is approximately 100 at t = td implying that, at least initially,
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the modification to the velocity is due entirely to the Lorentz force associated with the
large-scale field component. Interestingly, this ratio decreases only slightly during
the period td < t < ts; thus, even after the nonlinear readjustment, the energy in the
large-scale component substantially exceeds that of the small-scale component.

It is useful to note that in the kinematic regime, although the Lorentz force is
dynamically negligible, it has important symmetry-breaking consequences. During the
kinematic phase of the evolution the energy growth in wavenumbers other than 1
and 8 is dominated by nonlinear interactions. For instance, the initial production
of magnetic energy in wavenumber 3 (see figure 2a) can be understood as follows.
The Lorentz force associated with the K = 1 eigenfunction drives a weak velocity
with wavenumber K = 2; the interaction between this velocity component and the
K = 1 eigenfunction leads to the excitation of the K = 3 mode. Similarly, the initial
energy growth of wavenumbers 6 and 12 is associated with a weak velocity with
wavenumber 9, itself driven by the Lorentz force due to the cross-interaction between
the eigenfunctions with wavenumbers K = 1 and 8, and the magnetic field mode with
K = 3 described above. From the preceding examples it is easy to deduce that initial
conditions with even or odd parity are preserved for all times. Thus, both even and
odd wavenumbers must be present initially to obtain a complete spectrum. In the
kinematic regime there are two distinct contributions to the growth of each mode.
One is the intrinsic dynamo instability of the system and proceeds at the dynamo
growth rate for that particular mode. The other is due to nonlinear interactions and
can, in many circumstances, exceed the natural dynamo growth rate. For example, in
the present case, the growth of the K = 1 and 8 modes in what we define to be the
kinematic regime is mostly due to the former, while for all other modes it is due to
the latter.

The evolution can be summarized as follows. There is a kinematic phase in which
the K = 1 and 8 modes are growing exponentially at the dynamo growth rate, and all
other modes are being amplified nonlinearly. The initial conditions are such that the
K = 1 mode is the first to reach sufficient amplitude to be dynamically significant,
leading to a modification of the velocity field such that its own exponential growth is
saturated. There then follows an intermediate phase in which all other modes increase
to their equilibrium amplitude. The resulting state is one in which the large-scale
field, K = 1 here, is dominant; all other modes are present at a substantially lower
amplitude. From this example one would conclude that the dynamo system under
consideration can efficiently generate a large-scale magnetic field.

3.2. Small-scale saturation

We now consider the opposite case in which the initial amplitudes A1 and A8 are
chosen such that the energy in the small-scale component exceeds that in the large-
scale component throughout the kinematic regime. Figure 3 shows the evolution
of the energies binned by wavenumber. By analogy with the previous example, we
introduce td ≈ 20 and ts ≈ 65 signifying, respectively, the times at which the magnetic
field becomes dynamically significant and at which the system enters a statistically
stationary state. The evolution of the K = 8 mode proceeds in a similar way to
that of the K = 1 mode in the previous case; the energy grows exponentially in the
kinematic regime, overshoots and then declines in the readjustment phase between td
and ts, eventually settling down to its stationary value. Likewise, the K = 1 mode
grows exponentially in the kinematic phase, is further amplified in the readjustment
phase, and finally saturates at a level that is substantially less than that of the K = 8
mode. Superficially, it would appear that the present case is analogous to the previous
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Figure 2. Time evolution of (a) the magnetic and (b) kinetic energies as functions of time for a case
with Rm = 100. The magnetic initial conditions were such that A1(0)� A8(0). Also shown are the
time histories of the energies binned by vertical wavenumbers for specific choices of wavenumbers.
Notice that, after the nonlinear saturation, the magnetic energy in the K = 1 bin considerably
exceeds that in any other bin.
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one, only with the roles of the K = 1 and K = 8 modes reversed. However, we should
note that there is a fundamental difference between them; whereas the nonlinear
amplification of modes with K > 1 in the previous case corresponds to a forward
cascade, the amplification of modes with K < 8 in the present case corresponds
to a backward cascade. This is exemplified by consideration of the evolution of the
K = 1 mode (see inset in figure 3a). For times less than t = t1 ≈ 20 the mode grows
exponentially at its natural dynamo growth rate. At t = t1 the contributions to the
mode energy due to nonlinear interactions exceed that of the dynamo instability and
the energy begins to grow at a higher rate. This accelerated growth continues up to
t = t2 ≈ 40, after which the mode gradually approaches its stationary value. During
the period t1 < t < t2 the dominant nonlinear contributions to the energy growth of
the K = 1 mode are due to the interaction between magnetic fluctuations with K = 8
and velocity fluctuations with K = 7 and 9, the latter being driven by the Lorentz
force associated with the interaction between the K = 1 and K = 8 modes. (We
believe that the equality between td and t1 is coincidental.) The significant feature to
note is that the nonlinear contributions to the large-scale field (K = 1 mode) can be
represented as spatial averages of products of small-scale fluctuations (K = 7, 8, 9).
These have the form of the familiar α-effect term of mean field electrodynamics, and
it is therefore tempting to interpret them within the framework of this theory.

To examine this issue more closely, it is helpful to consider the different physical
mechanisms that can lead to the growth of the K = 1 mode; thus, symbolically, we
may write

(∂t − Rm−1∇2)b1 = ∇× (u0 × b1 + αb1 +Q1). (3.3)

Here b1 represents the amplitude of the K = 1 mode, u0 is the z-independent part
of the velocity, which at least initially is close to U 0, α measures the strength of
the α-effect arising from the interaction between fluctuating quantities, and Q1 is a
remainder. For small |b1| we expect u0 and α to be independent of b1, but possibly
depending on the fluctuations, while we expect Q1 to be of order |b1|2. We emphasize
that equation (3.3) should be understood only as a convenient way of expressing the
relative importance of the production terms. During the kinematic phase the α term
grows approximately exponentially due to the growth of fluctuations, overtaking the
kinematic growth (the u0 term) at t = t1. For t1 < t < t2 the growth of the large-
scale field is dominated by the α-effect, the efficiency of which decreases dramatically
after t = t2. This picture, and the saturation amplitude of the large-scale field, are
consistent with the idea of strong suppression of the α-effect (Vainshtein & Cattaneo
1992; Kulsrud & Anderson 1992; Gruzinov & Diamond 1995; Cattaneo & Hughes
1996), a point that will be pursued further in the next section. From this example, and
in sharp contrast to the previous case, one would conclude that the dynamo system
under consideration cannot efficiently generate a large-scale magnetic field.

The nature of the α-effect just invoked is somewhat non-standard and merits
further examination. The α-effect is based on the assumption that a scale separation
exists between mean and fluctuating fields, and expresses a relationship between the
mean electromotive force and the mean field. Traditionally, this relationship is most
clearly described within the framework of kinematic theory in which the velocity
fluctuations are prescribed (i.e. they are independent of magnetic effects), and small-
scale magnetic fluctuations arise from the interaction between the mean field and the
fluctuating velocity. The linearity of the equation for the magnetic fluctuations with
respect to both the mean and fluctuating fields then implies a relationship of the form

E = 〈δu× δb〉 = αB + . . . , (3.4)
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Figure 3. Time evolution of (a) the magnetic and (b) kinetic energies as functions of time for a case
with Rm = 100. The magnetic initial conditions were such that A1(0) ≈ A8(0). Also shown are the
time histories of the energies binned by vertical wavenumbers for specific choices of wavenumbers.
The inset in (a) shows the evolution for early times of the magnetic energy in the wavenumber
K = 1 and 8 bins, and of the total (magnetic) energy.
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where B is the mean field, δu and δb are the fluctuating velocity and magnetic field
respectively, and the dots represent terms involving (spatial) derivatives of the mean
field. An underlying, but not often stated assumption (though, see Moffatt 1978
and Krause & Rädler 1980), is that the magnetic fluctuations arise solely through
the interaction between the mean field and the fluctuating velocity. This should be
contrasted with the present case in which the magnetic fluctuations are unstable in
their own right, and therefore their amplitude is largely independent of the mean field
amplitude, at least when the latter is weak. Furthermore, here, the velocity fluctuations
are not prescribed, but rather are driven by the interaction between the mean and
fluctuating fields. Thus expression (3.4) still holds in an approximate sense, although
the roles of δu and δb are reversed, i.e. the magnetic fluctuations are prescribed
(independent of the mean field) while the velocity fluctuations are driven by the mean
field. In general, because of the intrinsic nonlinearity of the Navier–Stokes equations,
we do not expect a linear relationship between δu and B except, possibly, at small
Reynolds numbers. Thus we are led to the counterintuitive result that the α-effect
depends on the mean field even in the kinematic regime.

4. Short boxes
One of the more remarkable features to emerge in the previous section is that one

aspect of the evolution of the large-scale field in the second experiment described
above can be conveniently interpreted in terms of an α-effect. Since the notion of the
α-effect has been of central importance to our understanding of the generation of
cosmic magnetic fields, and given further that there appears to be some controversy
regarding its efficiency in the dynamical regime, we should take advantage of the
situation and pursue the matter further. The aim of this section is to establish
convincingly that a measurable effect is present, corresponding to our intuitive idea
of the α-effect, and to measure its dependence on the defining parameters, namely the
strength of the mean field and the magnetic Reynolds number.

It would be tempting to use the results of the previous section to measure the
average electromotive force directly, and to attempt to relate it to the α-effect. This
procedure, however, is difficult to implement in theory and bound to be supremely in-
accurate in practice; the fields are growing exponentially, are spatially varying, and can
only be measured in the regime of interest for a limited amount of time (t1 < t < t2).
A more sensible approach is to construct instead a family of experiments in which
both the mean and fluctuations are stationary (in time), but which can be related to
the experiment above. In this way the mean electromotive force can be measured to
any desired accuracy by taking long enough samples. To motivate this construction we
note that contributions to the mean electromotive force in the previous experiment are
dominated by interactions between fluctuating quantities of vertical extent approxi-
mately 1/8 the size of the box; over this scale the mean field (K = 1) is approximately
uniform. Consequently, for this further series of experiments, we prescribe the mean
field to be uniform and consider a computational domain of vertical extent 1/8 that
of the tall box. Details of the runs are given in table 2. Initially we assume that the
imposed uniform magnetic field, of strength B0, is in the vertical direction.

In this section, it is convenient to adopt the convention of measuring the (vertical)

wavenumber in units of kmax, and hence we define k̂ = kz/kmax. As in § 3, it is instructive
to consider the roles of the nonlinear interactions so as to verify that the two cases

are indeed analogous. Here the dominant magnetic fluctuations have k̂ = 1; their
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Figure 4. Time evolution of the magnetic and kinetic energies as functions of time for a case with
Rm = 200, and B2

0 = 0.01. The contributions to the magnetic energy arising from the dynamo
instability exceed the energy of the uniform component at t ≈ 20. At the same time the velocity
begins to show substantial deviations from U 0, and the kinetic helicity decreases. Shown in the inset

is the time history of the relative kinetic helicity, 〈U · ∇×U〉/
√
〈U 2〉〈(∇×U )2〉.

B2
0 = 10−4 B2

0 = 10−3 B2
0 = 10−2 B2

0 = 10−1 B2
0 = 1

Rm Urms Brms Urms Brms Urms Brms Urms Brms Urms Brms

25 1.39 0.91 1.26 (1.28) 0.61 (0.76) 1.37 1.19
50 1.32 0.79 1.23 (1.33) 0.59 (0.88) 1.38 1.24

100 1.40 1.08 1.33 0.93 1.29 0.72 1.23 (1.36) 0.51 (0.97) 1.38 1.30
200 1.33 0.87 1.28 0.80 1.27 0.68 1.19 (1.38) 0.63 (1.04) 1.36 1.36
300 1.27 0.68 1.24 0.64

Table 2. The root-mean-square velocity Urms and the root-mean-square magnetic field Brms for
various values of the vertical field B0 and the magnetic Reynolds number Rm in the short box runs,
with Re = 100, dimensions 2π × 2π × 2π/kmax and resolution 643. For runs with a horizontal field
with B2

0 = 0.1 the results are shown in parentheses.

interaction with the uniform (k̂ = 0) component of the magnetic field drives, via the

Lorentz force, velocity fluctuations with k̂ = 1. It is then the interaction of the (k̂ = 1)

magnetic and velocity fluctuations that contributes to the mean (k̂ = 0) electromotive
force. We should note that, as in the previous case, the amplitude of the magnetic
fluctuations is independent of the mean field, provided the latter is sufficiently weak,
whereas the amplitude of the velocity fluctuations depends crucially on it. The main
difference between the two cases is that here the mean electromotive force is generated

by interactions between fluctuations with identical (k̂ = 1) wavenumbers, whereas in
the evolution discussed in § 3.2 the contributions arise from interactions between
neighbouring (K = 8 with K = 7, 9) wavenumbers.

The time history for a typical case (Rm = 200, B2
0 = 0.01) is shown in figure 4. For

early times the velocity is close to U 0, and since there is no stretching of a uniform
vertical field by a z-independent flow, the magnetic energy remains close to B2

0/2.

The amplitude of the fastest growing eigenmode (k̂ = 1) increases exponentially, its
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contributions to the magnetic energy exceeding those of the imposed mean field at
t ≈ 20. At t ≈ 30 the magnetic energy approaches the equipartition value and the
dynamo growth saturates; after a period of nonlinear readjustment the system settles
down to a stationary state. The relative kinetic helicity (inset in figure 4) initially
has a value close to unity, corresponding to a maximally helical flow, decreasing to
a value close to 0.5 in the nonlinear regime. In the stationary state, we define the
volume-averaged electromotive force

E(t) = 〈U × B〉. (4.1)

The quantity E is strongly fluctuating in time, and it would therefore be erroneous to
use its value at any instant for the determination of α. Instead, we introduce its time
average

Ē(T ) =
1

T

∫ t+T

t

E(s)ds. (4.2)

This quantity should converge, for large T , to a value that is independent of t,
and that can be meaningfully related to the α-effect since the mean field is time
independent. An imposed vertical magnetic field allows the determination of three
components of the α-tensor, thus we have

αi3 = Ēi/B0. (4.3)

Figure 5 shows the time histories of the z-, x- and y-components of E(t) and their
time averages. We note that, as envisaged, the time averages are well behaved; the
z-component eventually converges to a negative value (of opposite sign to the kinetic
helicity), while the x- and y-components converge to zero, as indeed they must from
symmetry considerations. By contrast, the quantity E(t) is strongly fluctuating, and
it is clear that instantaneous readings, or short-term averages, could give rise to
misleading results.

The results are summarized in figure 6, which shows the dependence of the non-zero
component of α on the mean field energy. Each point on the graph corresponds to a
long-time average of the type shown in figure 5. The results show a marked decrease
in the efficiency of the α-effect once a critical, Rm-dependent value of the mean field
strength is exceeded. In order to relate these results to those of § 3.2 we make a loose
correspondence between time increasing from t1 to t2 in figure 3, and B2

0 increasing
in figure 6. At each instant, the effective value of α in the tall box experiment can
be related to the value computed in the short box experiments for the corresponding
value of B0. It is now clear why the energy in the large-scale (K = 1) field saturates
at a value much smaller than the equipartition value: the α-effect decreases by one
order of magnitude over the range of interest (10−4 . B2

0 . 2× 10−2). An interesting
feature of the data in figure 6 is that they make apparent the nonlinear character
of the α-effect described in this study. In a truly kinematic situation the asymptotic
value of the turbulent α-effect should be independent of Rm in the limit of vanishing
B0. In our case, however, the asymptotic values of α for the two cases differ by
approximately a factor of three. We believe that this residual dependence on Rm,
present even when the mean field is weak, is due to the fact that the part of the flow
responsible for the α-effect is itself driven by the Lorentz force associated with the
mean field. We can further verify that the critical value of the mean field strength
above which suppression occurs depends on Rm by considering further cases for
which Rm is varied for a fixed B0 (figure 7). It should be noted that the lower two
curves in figure 7 have no direct correspondence to the tall box experiment since the
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Figure 5. Time evolution of the z-, x- and y-components of the mean electromotive force E for
a case with Rm = 200, and a uniform component of the magnetic field along the z-direction of
strength given by B2

0 = 0.01. The thick lines show the corresponding time averages. Notice that the
z-component converges to a well defined negative value, i.e. of opposite sign to the average kinetic
helicity, while the x- and y-components converge to zero.

value of the large-scale (K = 1) field never became strong enough to explore this
region of parameter space.

Similar measurements can be made for the case when the imposed uniform field
is horizontal, in the y-direction, say. This allows the determination of different
components of the α-tensor. For instance, the existence of a mean electromotive force
along the y-direction allows determination of α22. However, since α is nonlinearly
driven, this quantity is not the same as the corresponding component of the α-tensor
for the case when the mean field is vertical. This property can be illustrated by
comparing the value of α32 in the two cases. For the case of a vertical imposed
field, α23 can be explicitly computed to be zero (see figure 5). For the system under
consideration, which is statistically homogeneous along each direction separately, it is
reasonable to assume that the α-tensor is symmetric (Moffatt 1978), and thus we can
infer that α32 is also zero. This should be contrasted with the value of α32 calculated for
an imposed field in the y-direction, which is manifestly non-zero, as shown in figure 8.
These considerations notwithstanding, as shown in figure 9, the behaviour of the
α-effect, though not identical, remains qualitatively the same, with strong suppression
occurring once the mean field exceeds a (small) Rm-dependent value.
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Figure 6. Non-zero component of the α-effect computed from the time-averaged mean electromotive
force as a function of B2

0 for cases in which the uniform component of the magnetic field is in the
z-direction. Each marked point corresponds to a distinct numerical experiment. The value of the
α-effect has been normalized with respect to the r.m.s. velocity for each case.
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Figure 7. Non-zero component of the α-effect computed from the time-averaged mean electromotive
force as a function of Rm for cases in which the uniform component of the magnetic field is in the
z-direction. Each marked point corresponds to a distinct numerical experiment. The value of the
α-effect has been normalized with respect to the r.m.s. velocity for each case.

5. Discussion
The results of the previous sections present us with a number of issues that

deserve discussion. One of the many significant conclusions to be drawn from the
tall box calculations of § 3 is that nonlinear dynamo states depend crucially on
initial conditions. This is true even when the initial conditions describe a state of
weak magnetization. In general terms, one of the determining factors appears to
be the distribution of magnetic energy among the different scales at the time when
the strongest fluctuations reach equipartition. For example, in the first experiment
(§ 3.1) there was little further growth of the small-scale components once the large-
scale component had saturated. By contrast, in the second experiment the growth
of the large-scale component was accelerated, albeit only for a short time, by the
presence of small-scale fluctuations at the equipartition level. We should point out
that our chief interest in this work has been in the magnetic field evolution on short
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Figure 8. Time evolution of the z-, x- and y-components of the mean electromotive force E for
a case with Rm = 100, and a uniform component of the magnetic field along the y-direction of
strength given by B2

0 = 0.01. The thick lines show the corresponding time averages. Notice that the
y- and x-components converge to well-defined non-zero values, while the z-component converges
to zero.

dynamical timescales. There is, though, also evidence for readjustments on a much
longer timescale. For instance, in the second experiment of § 3 the total magnetic
energy continues to increase after what we have called the nonlinear saturation phase.
However, the growth is extremely slow, and, although one cannot be absolutely certain
from simulations conducted at a moderate value of Rm, appears to be occurring on
an Ohmic diffusion timescale. This idea is reinforced by the dynamo simulations
of Brandenburg (2001) who considers a range of Rm (again, of necessity, restricted
to small to moderate values) and who finds a long-term adjustment on a timescale
that increases with Rm. This slow growth in magnetic energy is also accompanied
by changes in field geometry; for instance, modes with different wavenumbers may
occasionally swap amplitude (see figure 3). It is by no means clear whether a unique
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Figure 9. Largest non-zero component of the α-effect (α22) computed from the time-averaged mean
electromotive force as a function of Rm for cases in which the uniform component of the magnetic
field is in the y-direction and B2

0 = 0.1. Each marked point corresponds to a distinct numerical
experiment. The value of the α-effect has been normalized with respect to the r.m.s. velocity for
each case.

final state is achieved. The present evidence, such as it is, suggests that this is
unlikely. We have deliberately chosen not to study this aspect of the dynamo problem
for two reasons. In most astrophysical situations the Ohmic timescale is very long,
and dynamo theory concentrates on the problem of field generation on dynamical
timescales. Furthermore, even though the problem is of some interest, it is impractical
to pursue its study by high-resolution numerical simulations.

One of the interesting features of the early phases of the simulations concerns the
nature of the kinematic approximation. In nonlinear dynamo simulations starting from
initial conditions of weak magnetization, it is conventional to distinguish an initial
kinematic regime from a subsequent dynamical regime, the former being identified as
the time period during which the Lorentz force is dynamically insignificant. Typically,
this phase of the evolution is described by the kinematic approximation, which
consists of solving the induction equation alone, for a prescribed velocity field. There
are circumstances, however, in which this procedure is inappropriate, corresponding
to cases in which the Lorentz force, though dynamically insignificant, has important
symmetry-breaking effects. For these cases, paradoxically, the kinematic regime cannot
adequately be described by the kinematic approximation. For example, in the tall box
experiments, it is the action of the Lorentz force that is responsible for the generation
and rapid amplification of all the modes with wavenumbers K not equal to 1 or 8. If
we had instead described the ‘kinematic’ evolution in terms of the induction equation
alone, the distribution of energy between the different wavenumbers at the time when
the Lorentz force became dynamically significant would have been very different, with
radical consequences for the subsequent evolution.

The evolution of the large-scale magnetic field described in § 3.2 is consistent with
the existence of an α-effect that is driven nonlinearly, and whose efficiency decreases
dramatically once the mean field energy exceeds a critical value. This interpretation
is further supported by the small box experiments showing that an α-effect with
precisely these properties can be measured to any degree of accuracy, provided
a correspondence is made between volume averaging in the tall boxes, and time
averaging in the small ones. Furthermore, there is an agreement between the tall
box and short box experiments regarding the mean field intensity above which the
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α-effect becomes inoperative. Significantly, this value agrees with the notion that the
α-effect is strongly nonlinearly suppressed (Vainshtein & Cattaneo 1992; Kulsrud &
Anderson 1992; Gruzinov & Diamond 1995; Cattaneo & Hughes 1996). Because
so many models of astrophysical dynamos rely on the concept of an α-effect, it is
worthwhile to speculate about the general applicability of the above result.

The idea that the turbulent α-effect could be strongly suppressed (i.e. that a weak,
Rm-dependent, field could have an O(1) influence on α) was initially suggested by
analogy with the strong suppression of the turbulent diffusivity in two-dimensional
MHD (Vainshtein & Cattaneo 1992; Cattaneo & Vainshtein 1992). This result was
further supported by independent studies based on quasi-linear closures (Gruzinov &
Diamond 1995), and by numerical simulations similar to the short box experiments
described above (Cattaneo & Hughes 1996). These conclusions have, however, been
challenged by the work of Blackman, Field and coworkers, who have raised two types
of objections. Field, Blackman & Chou (1999) claimed that the strong suppression
result was incorrect, despite its excellent agreement with numerical experiments.
However it should be noted that the results of Field et al. (1999) are based on an
assumption that the Strouhal number, S , defined as the ratio of the eddy correlation
time to the eddy turnover time, is small. This assumption is certainly incorrect for
hydrodynamic turbulence where it is known experimentally that S is O(1). Little
is known experimentally about the magnitude of S in the hydromagnetic case for
large Rm. However it is not likely to be smaller than in the hydrodynamic case, and,
indeed, some numerical evidence suggests that it may actually be large (Cattaneo
1994); thus the approach of Field et al. (1999) may well be fatally flawed. In a
later work, Blackman & Field (2000) changed the nature of their objection, arguing
instead that the strong suppression result was, after all, correct – a stark contradiction
to their earlier claim – but was inapplicable to astrophysical situations. Instead, they
claim that the dependence of α on Rm and B0 observed by Cattaneo & Hughes
(1996) ‘is not a dynamic suppression’ and that the dominant nonlinear influence on
α results instead from the role of magnetic helicity flux through the boundaries of
the dynamo region. The first of these assertions is completely false – the suppression
measured by Cattaneo & Hughes (1996) arises entirely as a result of the Lorentz
force and hence is a totally dynamic phenomenon. As for the second point, it is
certainly plausible that the helicity flux plays some role in determining α. However,
just how important a role depends crucially on the nature of the term describing this
flux. At the moment, there are no estimates of its magnitude relative to that of the
term describing the suppression. We believe that these should emerge either from a
rigorous theory of MHD turbulence – not likely to be forthcoming – or from careful
numerical experiments. Until such results become available, the authors would like to
keep a healthy state of neutrality on the matter.

We conclude this paper by returning to the initial motivation for this work,
namely the generation of large-scale magnetic fields by small-scale turbulence. The
traditional viewpoint, going back to the work of Pouquet, Frish & Léorat (1976), is
that the saturation process proceeds from small to large scales as each scale reaches
equipartition. In this scenario the inverse cascade responsible for the transfer of
magnetic energy to larger scales remains efficient, and large-scale fields of equipartition
amplitude can readily be generated. By contrast, within the present framework it
would appear that it is difficult to generate a large-scale magnetic field of substantial
amplitude unless one is already present at the onset of the dynamical regime. In that
case (§ 3.1) the nature of the saturation is such as to inhibit the further amplification
of magnetic fields on all smaller scales. In view of this fact, we would like to propose
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the following nonlinear dynamo conjecture: when dynamo saturation occurs on a
given scale it inhibits the growth of magnetic fields on smaller, but not necessarily on
larger scales. For instance, for helical turbulence, a large-scale magnetic field could
be amplified even after the nonlinear saturation of the small-scale field. However, as
seen in the present numerical experiments, this mechanism itself becomes ineffective
at small amplitudes of the large-scale field.
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